(1)热效率高,气密性好,可以通过调节热媒体的流量来调节预热助燃空气和预热煤气之间的热量。(3)预热助燃空气和煤气的热交换器可分开设置,比较灵活,适应于热风炉区场地狭窄的技术改造。(4)受热侧、放热侧分离设置,可同时预热空气和煤气,避免因漏气造成预热煤气不安全的问题。(5)热媒换热器的体积小而轻,便于安装和更换,维护简便。(6)热媒体采用导热油,在较高温度下也具有热稳定性,可长期连续使用。(2)为了安全,热媒贮存罐必须与热风炉保持一定的距离。(3)翅片和翅片管间距小,阻力大,清灰困难,因而对加压循环泵的要求比较高。(1)低压省煤器的用镍络渗层零隙阻钎焊螺旋鳍片管作传热元件,接触热阻几乎为零,具有抗腐蚀,耐磨损及防堵灰等综合性能,即便烟气流阻限制较严格,也可将烟气流阻控制在允许范围内。(2)直接降低了排烟温度,因而节省煤炭用量,同时减少了脱硫系统所需的工艺用水,进一步保证了除尘效率和脱硫效率。(3)具有良好的煤种和季节适应性。锅炉的低压省煤器出口烟气温度可根据季节和煤质(主要是含硫质量分数)进行调节,可节省标煤耗,也可防止低温腐蚀。(4)低压省煤器布置于空气预热器后面,其传热对锅炉其它受热面不会产生影响,因而不会降低锅炉效率。(5)由于布置在锅炉本体外的引风机处水平烟道,空间宽敞,安装简便,安装费用较低,同时便于检修。为防止低温腐蚀,将低压省煤器进口水温设计在酸露点+10℃,温度较高导致不能大幅度降低排烟温度,余热回收效果不佳。电厂中烟气余热回收的换热器,在实际使用中还有几点问题:第一,腐蚀问题。关于腐蚀,最严重的当属酸的腐蚀。电厂尾气中含有二氧化硫,当未除尽的二氧化硫在催化剂的条件下与氧气结合生成三氧化硫,最后与水蒸气结合形成硫酸蒸汽,硫酸蒸汽的存在使烟气的酸露点显著升高,当烟气温度低于酸露点时就会造成烟气结雾,对换热器造成腐蚀,又称为低温腐蚀。低温腐蚀主要对空气预热器造成危害,酸雾会使空气预热器的金属壁变薄,损坏,是大量的冷风进入空气预热器,而且一同进入的水蒸气会粘在金属壁上,造成空气预热器的堵塞,严重时还可能造成生产事故。第二,换热器的积灰问题。这个是各类锅炉和工业炉窑的通病,无论是固体燃料还是液体燃料甚至是气体燃料都会有不同程度的积灰问题,但是固体燃料的烟灰数量更多,这对于以煤炭为主要燃料的电厂是一个重大的问题,烟尘对于换热器的不良影响主要有(1)锅炉烟灰的腐蚀性会增加维修成本,降低换热器的使用寿命。(2)烟灰可能会堵塞通气管,造成换热器损坏。(3)大量的烟灰还会造成换热器的工作效率大打折扣。(4)烟灰还可能造成结垢,使换热器局部过热和降低工作效率。最后由于烟囱内的空间有限,清理工作也变得十分困难。第三,经济性。就目前的材料成本和工艺方面,可以在一定程度上解决上述问题,但产品高昂的价格和维护成本使量产在短时间内难以实现。综上所述,可以看到换热器在电厂烟气余热回收方面的应用十分广泛。不同的换热器各有优缺,通过比较各种换热器的优缺点,和实际应用中面临的关键问题,如:露点腐蚀,积灰,磨损等,今后的换热器发展必须要克服这些问题同时注重经济利益和回收的效率。GGH换热器虽然可以有效地利用烟气的一部分热能,但在实际应用中面临初期投资大、维护费用高、故障率高、不能较好地解决酸露点腐蚀等问题使得现阶段GGH在国内的应用前景不大。而热媒式换热器的运转设备较多,而且设备的维护、运转费用高,对余热回收系统的要求较为苛刻,在国内应用也较少。常规的安装在锅炉尾部的低压省煤器也面临腐蚀,磨损和引风机电耗增大,进水口水温设计值高降低排烟温度效果不显著等问题。对比前几种换热器,热管换热器的传热效率高,使用的寿命较长,而且能较好地解决低温腐蚀以及磨损带来的问题,单根热管损坏可以单独更换而不会影响整体的使用,虽然还面临着积灰等技术问题,但是其利大于弊,随着热管技术的不断进步,热管换热器在电厂烟气余热回收利用方面的前景也不断扩大。全焊接板式换热器式目前国外应用较成熟的高效节能换热器,具有传热系数高,重量轻,体积小,回收效率高等优点,其应用前景也十分广泛。此外还有诸如:螺旋折流板,纵流管束换热器等等新型的高效换热器不断发展,电厂烟气余热回收换热器将呈多元化,多方向的发展,氟塑钢换热器、热管和全焊接板等效率高的技术在换热器方面的应用也将更加广泛,新型高效的换热器也将逐步代替应用前景不大和传统的换热器。